
Retreat 2003

Applications Development
Outside the AG

Visualization Examples

Retreat 2003

Outline

• Technologies used for prototypes
• Examples

• Integration of AG and Grid resources
• Chromium display technologies
• Grid-aware visualization applications

• Steps towards Grid-enabled AG
Visualization applications

Retreat 2003

Technologies
• Development

• Python
• Chromium
• MPI (MPICH and MPICHG2)
• OpenGL
• VTK
• Globus

• Clients
• AG Venue Client
• OpenMASH Vic (h.261)

• Communication
• Multicast
• XMLRPC
• SOAP / WSDL

Retreat 2003

Extensions of Chromium to AG
• Application: Provide

high-resolution output
for existing applications
over the Access Grid,
with a single user
interacting with the
application.

AG Multicast

Visualization
Application

Rendering
Processes

Client
(Specialized)

Client
(Specialized)

OpenGL Video
(Multiple
Streams)

Video
(Multiple Streams)

Retreat 2003

Advantages
• Can be used with existing applications unmodified, even

closed-source applications, provided OpenGL is used for
display

• Distributed graphics via VIC provide uniform output to all
participants

• Graphical output is sent using standard Access Grid
streaming video mechanisms, allowing for recording via
Voyager, etc.

• High-resolution output (essentially arbitrary, limited by
computing resources) using multiple tiled streams

• Cluster used for rendering

Retreat 2003

AG and Grid Application Integration
• Application: Provide high-resolution, distributed, interactive

access to a reduced dataset for exploration and selection of
parameters used to submit full dataset resolution visualization
job requests to an automated back-end system.

Client
(Display)

Client
(Control)

Visualization
Client

Rendering
Processes

OpenGL

AG Multicast

Video
(Multiple
Streams)

Client
(Display)

Client
(Control)

Back-end Processing

Video
(Multiple
Streams)

Control
(XMLRPC / TCP)

Process
Control

(XMLRPC /
TCP)

Retreat 2003

Advantages
• Reduced dataset in distributed front-end allows for

manipulation of very large datasets, in a distributed
setting, without losing interactivity

• Customized client allows for wide range of dataset
interactions

• Many hybrid compute models possible for full-dataset
‘end product’ visualization

• Many users can simultaneously interact with the data to
produce a desirable view before full-dataset jobs are
submitted for processing

• Makes use of Grid Technologies, allowing for easier
integration with AGTk 2.x

Retreat 2003

Disadvantages

• Specialized client required for
interaction

• Large, complex system with many
dependencies

• Requires custom coded applications and
clients

Retreat 2003

Reduced-data Visualization Application
(Specialized VTK Interactor)

Start Load reduced
dataset

Initialize
parameters

Draw

Wait for event

Initialize External
Interface

(XMLRPC)

Quit event? End

Process Event

Yes

Draw Start Back-End
Process?

Start back-end
process

No

YesNo

Retreat 2003

Visualization Interaction Client
• Uses Python to produce a rich

client UI
• Uses XMLRPC to communicate

with the Distributed reduced-
data visualization application

• Regularly updates itself from
visualization app state,
allowing for many parties to
simultaneously interact

Retreat 2003

Back-end Processing Engine

Master NodeReduced-Data
Application

Loaders Renderers

Dataset
location and
processing
parameters

Minimally
processed

data

Rendered
partial
frames

Process Request
(XMLRPC)

Output
Image(s)

Compositor(s)

Retreat 2003

AG Integration
• Grid-enabled nature of AGTk 2.x allows for

remote invocation of various components
• Personal credentials, used for AG

authentication/security, also used for job
management in Globus environment

• (Prototype) Verified above capabilities by
spawning a complete job (all three
components) from a single, simplified user
interface

Retreat 2003

Steps Towards Embedded AG Application

• Application: Provide a customized client for on-
demand, with minimal dependencies.

Application

Client
Distribution
Manager

Client
Distribution

Client

Application
Client

Distribution
Client

Client
Registration

Query

Response
(Matched Client)

Query

Retreat 2003

Advantages

• User in an Access Grid session need not
have client prior to use

• Common set of minimal dependencies can
provide support for a wide range of clients

• Client version skew is minimized by
providing a fresh, most-recent copy of the
client each time it is used

Retreat 2003

Disadvantages

• Requires pre-installed minimal client
distribution component

• Requires common dependencies to be
pre-installed (such as Python, Tkinter,
etc.)

• Requires custom coded applications and
clients

Retreat 2003

Shared Image Viewer
• Application: Provide distributed, shared image

viewing capabilities utilizing the AGTk 2.0
Infrastructure.

Virtual Venue
(Application Event

Channel and Stored
State)

Display
Service

Display
Service

Shared Image
Viewer

Shared Image
Viewer

Retreat 2003

Advantages
• Participants in a collaboration can view

arbitrary image data with venue-based
synchronized updates

• Image display can be optimized for
different physical display systems

• Proper local application is used to render
the images based on the platform of each
user

Retreat 2003

Application Model
• Join the Shared Image Application Venue

component
• Pick a Display Service to display to (if multiple

Display Services are available, offer choice to the
user)

• Get any currently displayed image from the
saved state

• Wait for events requiring an update of the
viewed image
• If locally requested, broadcast the event and update

the shared state

Retreat 2003

Application Implementation
• Implemented as a set of Python classes
• Makes extensive use of utility functions and common

dependencies provided by the Access Grid Toolkit
• PyGlobus wrappers
• SOAP wrappers
• AG Service abstractions
• wxPython used for display

• Entire source is 293 lines, including comments and
white-space

• Written with minimal knowledge of Access Grid Toolkit
internals, and no knowledge of SOAP / WSDL

• Fully secure, Grid-enabled, and integrated with Access
Grid Toolkit 2.x

Retreat 2003

Shared Image Viewer
Shared App (Venue Communications)

class SharedImageViewer(wxApp):
def __init__(self, venueUrl, profile,

nodeServiceURL="https://localhost:11000/NodeService"):
… code deleted …

self.venueProxy = Client.Handle(venueUrl).GetProxy()
self.nodeServiceProxy = Client.Handle(nodeServiceURL).GetProxy();
self.privateId = self.venueProxy.Join(profile)
Retrieve the channel id
(self.channelId, eventServiceLocation) =
self.venueProxy.GetDataChannel(self.privateId)
Retrieve list of node services
serviceList=self.nodeServiceProxy.GetServices()
Parse service list, remove all non-display services
self.displayServices=[]
for service in serviceList:

for capability in service.capabilities:
if capability.role=="consumer" and capability.type=="display":

service.capabilities=Client.Handle(service.uri).GetProxy().GetCapabilities();
self.displayServices.append(service);

Subscribe to the event channel
self.eventClient = EventClient.EventClient(eventServiceLocation,
self.channelId)
self.eventClient.start()
self.eventClient.Send(Events.ConnectEvent(self.channelId))
Register the 'view' event callback
The callback function is invoked with one argument, the data from the
call.
self.eventClient.RegisterCallback("view", self.ViewCallback)
Create View status panel

… code deleted …
self.viewer=Viewer(self.frame,-
1,self.targetSurface,self.displaySize);

… code deleted …
Browse to the current url, if exists

currentImage = self.venueProxy.GetData(self.privateId,
"image")
if len(currentImage) > 0:

self.viewer.display(currentImage)
… code deleted …

def newImage(self,data):
Send the event
self.eventClient.Send(Events.Event("view",
self.channelId, (self.profile.publicId, data)))
Store the URL in the app object in the venue
self.venueProxy.SetData(self.privateId, "image", data)

def ViewCallback(self, data):
Determine if the sender of the event is this
component or not.
(senderId, image) = data
if senderId == self.profile.publicId:

print "Ignoring %s from myself" % (image)
else:

print "Displaying ", image
self.viewer.display(image)

Retreat 2003

Shared Image Viewer
Viewer (locally displays the image)

class Viewer(wxPanel):
def __init__(self, parent, id, displayContact, displaySize, frame = None):

… code deleted …
def display(self, viewURL):
… code deleted …

try:
if viewURL.startswith("https"):

DataStore.GSIHTTPDownloadFile(viewURL, tfilepath, None, None)
else:

my_identity = GetDefaultIdentityDN()
DataStore.HTTPDownloadFile(my_identity, viewURL, tfilepath, None, None)

except DataStore.DownloadFailed, e:
wxCallAfter(wxLogError, "Got exception on download")

if self.displayContact.startswith("Win32"):
os.system("start %s"%(tfilepath))

else:
import posix
if self.pid_set:

posix.kill(self.pid_set,9)
self.pid_set=0

self.pid_set=posix.fork()
if self.pid_set:

return
else:

posix.system("display -display %s %s &"%("localhost:"+self.displayContact[6:].split(":")[-1],tfilepath))
posix._exit(0)

Retreat 2003

Future

• More AG functionality
• More applications like the Shared Image

Viewer
• Integration of complex visualization

applications with the AG
• Services implemented using Grid

standards, scoped within Virtual Venues

Retreat 2003

Questions?

Retreat 2003

Contact Information
Questions or Comments regarding any of the content in

this presentation may be directed to:

Justin Binns
Futures Laboratory / Argonne National Laboratory
binns@mcs.anl.gov

